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Abstract

Identification of genetic loci in complex traits has focused largely on one-dimensional genome scans to search for
associations between single markers and the phenotype. There is mounting evidence that locus interactions, or epistasis,
are a crucial component of the genetic architecture of biologically relevant traits. However, epistasis is often viewed as a
nuisance factor that reduces power for locus detection. Counter to expectations, recent work shows that fitting full models,
instead of testing marker main effect and interaction components separately, in exhaustive multi-locus genome scans can
have higher power to detect loci when epistasis is present than single-locus scans, and improvement that comes despite a
much larger multiple testing alpha-adjustment in such searches. We demonstrate, both theoretically and via simulation, that
the expected power to detect loci when fitting full models is often larger when these loci act epistatically than when they
act additively. Additionally, we show that the power for single locus detection may be improved in cases of epistasis
compared to the additive model. Our exploration of a two step model selection procedure shows that identifying the true
model is difficult. However, this difficulty is certainly not exacerbated by the presence of epistasis, on the contrary, in some
cases the presence of epistasis can aid in model selection. The impact of allele frequencies on both power and model
selection is dramatic.
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Introduction

As technology becomes more cost effective, the amount and

scale of data available for answering fundamental questions about

the underlying genetic contribution to phenotypic outcomes of

interest has dramatically increased. Genetic markers, particularly

biallelic single nucleotide polymorphisms (SNPs), have been

developed for a wide variety of organisms [1], and current SNP

discovery techniques and reduced genotyping costs make it feasible

to score tens of thousands of markers in many individuals [2,3,4,5].

The plethora of data has sparked interest in developing

methodology for hypothesis testing for association mapping.

Testing for marker-phenotype associations is done within the

context of a specific experimental design [e.g. 6,7,8]. The

experimental design controls the structure of the population under

consideration and is therefore a critical component to account for

in subsequent modeling and testing. If the population is

constructed experimentally, allele frequencies are held constant

across loci, and are often equal. When the genetic structure of the

population is under experimental control testing marker-pheno-

type association is often referred to as QTL mapping [7]. In QTL

mapping, the issue of which test statistics to use to detect main

effects has been discussed quite broadly [e.g. 9,10,11,12,13,14,15].

Such one-dimensional genome scans have been enormously

popular resulting in more than 5,000 publications. Pedigree-based

linkage methods [e.g. 16,17,18,19] and some population-based

methods [e.g. 20,21] use the knowledge of relationships and

transmission of alleles among family members combined with

marker-phenotype tests to infer linkage and/or association. As

with QTL, the choice of test statistics and approaches is the subject

of much research and discussion.

Association mapping is the testing of the null hypothesis that a

genetic marker is not associated with a phenotype of interest in an

‘unstructured’ population or rather a population without explicit

information on pedigree relations [22], although accounting for

relatedness among members of the population due to population

substructuring has been shown to be critical [e.g. 23,24]. The

development of large numbers of SNP markers has made

population based genome-wide association testing increasingly

feasible [25,26,27,28].

Empirical studies suggest a prominent role for gene interactions

(epistasis) in the genetic control of many traits [e.g. 29,30,31,

32,33,34,35,36]. The most well understood genetic models for

gene interactions are described in terms of qualitative (Mendelian)

rather than quantitative traits [37]. In these qualitative trait

models gene interactions typically result in masking or covering

the effect of some alleles. For example, in an additive model with

two biallelic loci there are nine distinct genotypes. In a recessive

epistasis model for a qualitative trait, all effects having the

combination aa for one locus (regardless of the alleles at another
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locus) have a common outcome. In a quantitative trait model, this

corresponds to an equality of means. In this study a series of

epistatic cases that are quantitative in nature but based upon such

biological or molecular definitions of epistasis are considered.

Some of these molecular patterns of epistasis have been observed

for quantitative traits [e.g. 34]. They are depicted in Figure 1 (b–f).

We also consider the additive model (Figure 1a). How these forms

of molecular epistasis translate into statistical epistasis, i.e. the

deviation from additivity in a statistical linear model, depends on

allele frequencies at the locus of interest [38,39]. For instance, in

case f (Figure 1f) interactions occur in the absence of main effects

when allele frequencies are equal (0.5), but marginal effects arise

and can be picked up in one-dimensional genome scans when

allele frequencies are different. Thus, the term epistasis has

biological interpretations that can be quite distinct from the

statistical interaction alone [40,41]. In addition, typical gene

interaction effects that have been described will result in a subset of

possible statistical interactions [40].

There is debate about how to model and test for both main

effects and interactions when epistasis is present [e.g. 32,39,

42,43,44,45,46,47,48]. In the context of QTL mapping, consid-

eration of molecular interactions among loci has led to

constructing models with multiple markers and, using the factor

effects construction, testing the main effects and the interaction

effects separately [e.g. 43,49,50,51,52]. The power for the

detection of the interaction effect alone in the factor effects model

can be quite small especially after accounting for multiple testing

[53]. In this forward stepwise approach, epistasis is often a

nuisance factor that has been assumed to complicate and reduce

the efficiency of the QTL mapping exercise [e.g. 54].

Recently, it has been suggested that full models be fit during an

explicit multiple-locus genome scan [32,39,46,47]. Considering full

models (that is, main effects and interactions jointly instead of

marginal and interaction effects separately) emphasizes detection of

loci rather than partitioning of effects among loci. If epistasis is

present, this approach has intuitive appeal from a statistical point of

view as the tests of main effects are not readily interpretable in the

presence of interaction. Using computer simulations, Marchini et al.

[47] and Evans et al. [39] showed that fitting full models in two-locus

genome scans often yields higher detection power than single-locus

scans when epistasis is in fact present. This was despite a dramatically

lower significance threshold for individual tests after multiple testing

alpha adjustment in the pairwise search. In a QTL mapping context

for binary traits, Coffman et al. [46] evaluated testing full models and

showed via simulation that in this context QTL detection power is

larger in the presence of epistasis compared to purely additive QTL.

In this paper, the impacts of molecular forms of epistasis on

statistical power are explored in an association mapping context.

Cases where two loci are jointly responsible for a fixed range of

phenotypic variation are studied. The impact of the genetic model

(additive or epistatic) on locus detection power is studied. Using a

linear models framework, the F test of the full model and the F

test of the marginal effects are evaluated. The power of the F test

is shown to be larger under cases of molecular epistasis compared

to the additive model. Molecular epistasis also changes the

marginal effects and the power for single locus test of association.

These expectations are derived under simple assumptions and for

equal allele frequencies and fully balanced data. As association

mapping data are not likely to be balanced, empirical estimates for

the power of association tests under various conditions are derived

via simulation. As predicted, the presence of molecular epistasis

does, in many cases, have a positive effect on power. When allele

frequencies are disparate (that is, when one of the alleles occurs at

low frequency) as in many association mapping contexts, epistasis

can dramatically increase power for detection. Correct model selection is a

considerable challenge in the association mapping context, even in

cases with relatively high sample sizes. However, the difficulty of

the task is not exacerbated by the presence of molecular epistasis.

Results and Discussion

Molecular epistasis is expected to increase power
In order to examine the impact of epistasis on power, epistasis

needs to be carefully defined. While the term epistasis is common, it

has a history of being defined differently by different sets of scientists

[40,41]. In the case of a quantitative character, the definition often

Figure 1. Molecular Epistasis: Two-locus models used in the simulations. The X axis separates the three genotypes at one locus (BB, Bb and
bb) while the three lines indicate the different genotypes at the other locus (AA-triangles, Aa-circles and aa-squares). In panel a the effects of both loci
are additive (no epistasis). In panel b the effect of the bb combination masks the effect of the A locus - this is an example of recessive epistasis. In
panel c recessive epistasis is combined with dominance of the A allele at the A locus, in panel d both the aa and bb combinations exhibit recessive
epistasis. In panel e the recessive epistasis of the aa and bb combinations is combined with dominance at the A locus. In panel f, additive-by-additive
epistasis, the effects are purely epistatic- under equal allele frequencies this results in the absence of main effects at the A or B locus.
doi:10.1371/journal.pone.0012264.g001

Epistasis Increases Power
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used is that of statistical interaction. However, there are many

statistical interactions for which no known or plausible biological

model may exist [40,41]. Models of epistasis based upon molecular

interactions have been described in terms of qualitative characters

[37]. In a qualitative trait, the typical result of epistasis is the

masking of one allele’s effect by another allele. In a quantitative trait

setting this corresponds to equality among means. We translated

classic cases of qualitative epistasis into functions of means

(Figure 1b–e). Figure 1a represents the completely additive model

with no epistasis. Figure 1f represents the case of an interaction

when no main effect is present (additive by additive epistasis) and is

included here due to it’s special status as being often considered as

the most diabolical form of statistical interaction.

In addition to this visualization, the genotypic means can be

presented in a Punnett square, with the values of the cells

representing the genotypic means as in Table 1.

When genotypic values are unconstrained, hij can take on any

value. Particular genetic models dictate a relationship among the h
parameters, or in statistical parlance, a constraint in the parameter

space. Consider the case of simple additive effects (Figure 1a). The

additive genetic model states that the values of the genotypic

means (h parameters) are constrained as follows: the heterozygote

must be the average of the two homozygotes

h2:~
h1:zh3:

2
and h:2~

h:1zh:3
2

:

In addition, the two loci are independent. In such a case the values

of the hij are constrained by this relationship. Without loss of

generality, the means can be centered, and the values of the theta

parameters represented by a and b such that the relationship

among the hij induced by the genetic model are more obvious.

The left panel of Figure 2 represents the theta values as they are

constrained by the additive model.

For the additive model, the A and B locus are independent.

Looking at the statistical table representing the expected sums of

squares (ESS) for the additive model (Figure 2) the effect of the

Rows(A) and the effect of the Columns (B) do not influence each

other. This can be seen by the absence of A effects in the B ESS

and vice versa. The ESS are directly related to the power of the F -

test (see the Methods Section) in that larger values of ESS result in

larger power. For example, for the A effect:

ESS~
1

3
a2z02z({a)2
� �

~
2

3
a2:

As the effect a increases, the ESS will be larger and the detection

power will be greater. Similarly, there is greater power to detect a

column effect B if the value of b increases (Figure 2). In the

additive model, there is no interaction among the row and column

effects therefore no epistasis; no matter the value of a and b the

ESS for epistasis is zero. The total ESS are
2

3
a2z

2

3
b2.

Molecular forms of epistasis (Figure 1b–f) can be visualized for

quantitative traits as the restriction of the parameter space, that is

equality among means. For example, in recessive epistasis (Figure 1b),

h31~h32~h33. A particular example of this case is given in Figure 3.

In the case of recessive epistasis, the Punnett square in Figure 3

makes it clear that the marginal effect of the A locus will have an

impact on the marginal effect of the B locus. More formally, in the

examination of the ESS (Figure 3), the row effect a is present in the

ESS for the Column effect B and thus, can have an impact on the

power of the test for column effects as well as interactions, resulting

in increased power for tests of both marginal effects and the overall

model F . In the examination of the overall model F the F test is

stochastically increasing when the interaction term is present, that

is the value of the ESS for the whole model is greater under the

epistatic model than the additive model. The total ESS for this

scenario is 2
1

3
a2z4abz2

2

3
b2. Compared to the ESS in Figure 2

these ESS are larger and so the F test of the full model will have

greater power if this is the true scenario. Other cases of molecular

epistasis are similar, and described in detail in the Methods

Section. Epistasis can also change the power of the detection for a

marginal effect of a different locus as can be readily seen by

examining the ESS for the individual loci.

In Figure 1f, often considered the most diabolical case, the

marginal effects are equal a~b. In this case, an increase in the row

effect has no effect on the columns, but can increase the interaction.

In the case of equal allele frequencies the wisdom of choosing the

test of the full model is clear, as the only chance to detect this effect

lies with testing the full model (main effects and interaction together)

rather than the main effects alone. Upon close examination, it

Table 1. Theoretical cell means corresponding to the nine
genotypes.

BB Bb bb

AA h11 h21 h31 h:1

Aa h12 h22 h32 h:2

aa h13 h23 h33 h:3

h1
: h2

: h3
:

Without loss of generality it can be assumed that the values are centered so that
the overall mean is zero, that is

P
ij hij~0.

doi:10.1371/journal.pone.0012264.t001

Figure 2. Punnett Square, Factors and Expected Sums of Squares for the additive model (Fig. 1a). The left Punnett Square gives
genotypic means for the additive model as depicted in Figure 1a. Without loss of generality the genotypic means are centered. The last column and
last row are the marginal effects, the average value of the cells in the rows and the columns. The right table gives the Expected Sum of Squares for
the A effect, B effect, and interaction.
doi:10.1371/journal.pone.0012264.g002

Epistasis Increases Power
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becomes clear that this is only true in the case where allele

frequencies are equal, and when they are unequal, as in association

mapping contexts, the tests for the marginal effects of one locus are

affected by the distribution of the genotypes in the population which

can in turn impact the F test for the individual loci. The ANOVA

table for this case is given in the Methods Section.

Simulations: estimated locus detection power as affected
by epistasis

Many power studies for epistatic QTL are based upon the

statistical models and statistical definitions of epistasis. In those cases

data are simulated based upon the amount of variance explained by

the genetic model, which is then further partitioned into main effect

and interaction terms. However, molecular models of epistasis for a

quantitative trait (Figure 1b–f) are more intuitively described in

terms of relationships among means. This casting of the model in

terms of relationships among means also indicates that in an

ANOVA framework a fixed effects model can be employed as in

Equation(1). The simulations conducted in this paper were all based

upon distribution of means, and the impact of varying the

relationships among means. One of the benefits of using the fixed

effects model, and the corresponding cell means parameterization is

that the total effect size (the distance between the means relative to

the standard deviation) can be held constant, as is conventional in

many statistical power analyses. The question then becomes: for a

fixed effect size, how does epistasis impact the percentage of

explained variance? Interestingly, epistasis tended to increase the

proportion of variance explained by the correct model (Figure 4).

This result implies that when the proportion of total variance is

held constant under simulation conditions, as has been done in

some studies, epistatic models then must often force the effect size

simulated to decrease. Such approaches might fail to appreciate the

true impact of molecular forms of epistasis on QTL detection

power. In fact, detection power, estimated as the proportion of

iterations in which the full model F test for the correct model had a p

value below 0.05, was often higher in the presence of epistasis in our

simulations (Figure 5). Over much of the parameter space highest

power was achieved with extreme forms of epistasis. The model

types with the highest R2 were not always the ones with highest

power, for example epistasis form ‘f’ (Figure 1) does not have the

highest R2, although it can have the highest power (Figure 5a).

The simulations demonstrate that epistatic models can be more

powerful than the additive model (Figure 5). This is particularly

apparent when one of the QTL alleles is rare. These results are

consistent with recent reports [34,39,46,47]. Under many forms of

epistasis, the expectation is for higher ESS, in turn leading to

higher noncentrality parameters of the F -test and higher power

than under additive models. As it is believed that many traits of

biological interest are subject to epistasis, this is potentially good

news for empiricists seeking to map trait-affecting loci.

Simulations: detection of epistatic QTL in a full genome
scan

Determining that the power of the correct model can be higher

under epistatic conditions is only the first step. Realistically, single

models are not fit in association mapping studies. Instead, genome

Figure 3. Punnett Square, Factors and Expected Sums of Squares for recessive epistasis (Fig. 1b). The left Punnett Square gives
genotypic means for the recessive epistasis case as depicted in Figure 1b. The last column and last row are the marginal effects, the average value of
the cells in the rows and the columns. The right table gives the Expected Sum of Squares for the A effect, B effect, and the interaction.
doi:10.1371/journal.pone.0012264.g003

Figure 4. Goodness of fit for molecular epistasis. Proportion of variance explained by the QTL, estimated as the full model r2 of the correct
model (averaged over 50 iterations). Panel A shows results for QTL with disparate allele frequencies (low minimum allele frequency); panel B shows
results for QTL with more similar allele frequencies (high minimum allele frequency).
doi:10.1371/journal.pone.0012264.g004

Epistasis Increases Power
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scans of single and pairs of loci are conducted. The question then

becomes: ‘‘How does the chance of selecting the correct loci

depend upon the genetic model?’’. A relatively straightforward

grid search algorithm was used to search the model space and BIC

was used as a model selection criteria. Reliable detection of the

correct loci required large sample sizes and allele frequencies to be

closer together than is often the case in association studies

(Figure 6). Particularly disheartening was the low probability of

selecting the correct loci at sample sizes of n = 1000, when allele

frequencies are disparate.

Small sample sizes tended to result in overfit models, rather than

underfit, selecting more than 2 loci (Figure 7), as is expected with

BIC [55]. Moreover, even when the correct number of loci were

selected, the actual loci selected were often not the causal locus

(Figure 8). When allele frequencies were disparate, it was

extremely rare to correctly identify both loci contributing to the

trait, even when sample sizes were large. The outlook was less

bleak when allele frequencies were closer together and sample sizes

were large: at least one, and often both, of the specified QTL were

correctly identified (Figure 8).

Interestingly, in many cases the presence of epistasis tended to

increase the performance of the model selection. For example,

when allele frequencies are similar and sample size is low (n = 100),

several forms of epistasis lead to a higher probability of correctly

detecting at least one of the specified QTL, and also to lower false

discovery rates, compared to the additive case. The same pattern is

true at moderate sample sizes (n = 500). When sample sizes are

large (n = 1000) the additive model outperforms epistatic models b
and c, but epistatic models d,e and f are still more likely to

correctly select the specified QTL. One possible explanation, is

that in the additive case the correct model is not included in the

search space when only full models are examined.

When allele frequencies are disparate, as is likely to be the case

for most association mapping studies, the pattern is more subtle. In

all sample sizes considered the epistatic models appear to have a

slight advantage in selecting the correct loci but given the size of

the simulation study, this can not be said to be a statistically

significant difference. Fortunately, when sample sizes are reason-

able (n = 500, 1000) and allele frequencies are closer together

incorrect loci are unlikely to be selected (Figure 8, lower panels).

These model selection results illustrate two points. First,

detection of loci using BIC-based model selection results in a

high proportion of model misspecification in low-power situations

(small sample size, low allele frequencies) but yields good results

Figure 5. Power for detection. Power of detection for the different 2-locus models. Power was estimated as the proportion of iterations in which
the full model F test for the correct model had a p value ƒ0:05. Panel A shows results for simulations with disparate allele frequencies within each
locus (1%–10% for the rare allele and w90% for the other allele); panel B shows results for simulations with allele frequencies within each locus closer
to equal (20%–30% for one allele and 70%–80% for the other allele). Sample sizes were 100, 500, or 1000 diploid individuals.
doi:10.1371/journal.pone.0012264.g005

Figure 6. Selecting the correct model. Performance of the BIC model selection procedure: accuracy, estimated as the proportion of iterations
where the selected model based upon BIC is the correct model without over- or underfitting. Within each panel the six types of epistasis are as in
Figure 1. Panel A shows results for simulations with disparate allele frequencies within each locus (1%–10% for rare allele and w90% for the other
allele). Panel B shows results for simulations with allele frequencies within each locus closer to equal (20%–30% for one allele and 70%–80% for the
other allele).
doi:10.1371/journal.pone.0012264.g006

Epistasis Increases Power
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(low proportion of false discoveries and one or both of the specified

loci correctly identified) with reasonably large sample sizes and

similar allele frequencies. Second, and most important, the

presence of epistasis does not appear to reduce detection efficiency

but, in contrast, increases detection rates over much of the

parameter space. This is consistent with the power estimates

(Figure 5) and the predictions based on the balanced model.

When allele frequencies are closer together, as in many cross-

based experimental QTL studies, the power for detection of loci is

good among all models once the sample size is larger than 500

total (Figure 5). Power even in sample sizes of 1000 is substantially

lower when allele frequencies are disparate. Selecting the correct

model is also more challenging when allele frequencies are

disparate (Figure 6), as is estimating the number of loci

contributing to the trait (Figure 7). Only when allele frequencies

are similar, and sample sizes are relatively large (n = 1000) is model

selection straightforward.

Our simulations show that the presence of epistasis between two

QTLs can increase QTL detection power compared to the

additive case where the two QTLs control trait variation

independently of each other. The power of single-locus scans

versus multilocus full model scans, when epistasis is present, has

been addressed in previous studies (e.g. [39,47]); these studies

showed that two-locus full model scans outperform single-locus

Figure 7. Performance of the BIC model selection procedure: number of loci selected. For each simulation setting, the percentage of
iterations is given in which 0, 1, 2, or 3 loci were selected. Within each panel the six types of epistasis are as in Figure 1. Upper panels show results for
simulations with disparate allele frequencies within each locus (1%–10% for rare allele and w90% for the other allele); lower panels show results for
simulations with allele frequencies within each locus closer to equal (20%–30% for one allele and 70%–80% for the other allele).
doi:10.1371/journal.pone.0012264.g007

Epistasis Increases Power
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scans. We show that the presence of epistasis potentially increases

statistical power to detect underlying QTLs, and does not decrease

the power of detection, leading us to the conclusion that epistasis is

not necessarily an obstacle that complicates QTL detection efforts.

One issue that is unexplored is what model selection strategy is

optimal for cases with and without epistasis, and whether the

optimal strategy differs when epistasis is present or absent. Is there

a possible negative impact of multiple locus scans, when epistasis is

not present? In theory, at infinite sample size, model selection

using BIC selects the true model if it is included in the search space

[56]. When loci are independent, the tests within the multiple

locus model are identical to the tests in a single locus model [57].

When no interaction is present the inclusion of the interaction

term will not affect the model fit, although there will be a

difference in the degrees of freedom. In small samples, however, it

is unclear how model selection is affected if BIC is the criteria used

for model selection and the true model is not part of the model

search space. In the context of our simulations the question is if, or

to what extent, failing to include the model without the interaction

term in the search space results in reduced likelihood that the best

model includes the two QTLs. An additional set of simulations

were performed to gain insight in this issue (data not shown) using

datasets generated by an additive genetic model (two QTLs

without interaction; Figure 1a) and comparing model selection

Figure 8. The number of selected loci that are correct. Performance of the BIC model selection procedure: number of specified loci that are
selected correctly. For each simulation setting, the percentage of iterations is given in which 0, 1, or 2 of the specified QTL loci were correctly
identified (stacked bars, left Y-axis). Also shown is the observed false discovery rate, defined as the average proportion of selected loci that were not
specified QTL (dots, right Y-axis). Within each panel the six types of epistasis are as in Figure 1. Upper panels show results for simulations with
disparate allele frequencies within each locus (1%–10% for rare allele and w90% for the other allele); lower panels show results for simulations with
allele frequencies within each locus closer to equal (20%–30% for one allele and 70%–80% for the other allele).
doi:10.1371/journal.pone.0012264.g008

Epistasis Increases Power
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approaches that search all 1-, 2-, and 3-marker models that

include interactions between markers (full models) and without

interactions (main effects models). In all explored cases both search

approaches performed equally well in identifying the two QTLs in

the best model. However, in a minority of cases overfitting (i.e.,

selecting a best model with w2 markers) was more frequent in the

‘full model’ search. Importantly, the correct markers were

identified in the overfit models. It must also be recognized that

other criteria such as AIC (Akaike Information criteria) and

informed searches [46] rather than exhaustive searches, may also

perform better than the simple approach discussed here. The main

finding is not that our particular model selection strategy is optimal

in all cases, but rather that in the implementation of a common

model selection strategy, epistasis does not necessarily harm your

chances of picking the best model.

Detection of loci underlying quantitative traits efforts can benefit

from accounting for marker interactions when epistasis is in fact

present [39,46,47]. Empirical results show that the presence of

epistasis can increase power to detect the underlying loci compared

to the non-epistatic additive case, in two-marker full model tests as

well as in single-marker main effect tests. This was confirmed via

simulation, where locus detection via fitting full models was often

facilitated by the presence of epistasis. As it is becoming increasingly

clear that epistasis is a crucial component in many biological

systems, these results indicate that epistasis may not have the

negative impact perceived by many biologists, and that detection

efforts may in fact benefit from the presence of epistasis.

Methods

Statistical model
For the twoway fixed effects model with interaction, the usual

model equation is

Yijk~mztizbjz(tb)ijzeijk, eijk*N(0,s2), ð1Þ

i~1, . . . ,t, j~1, . . . ,b, k~1, . . . ,r.

It will be simpler to rewrite this model in the equivalent cell

means model

Yijk~mzhijzeijk, eijk*N(0,s2), ð2Þ

where we can equate hij~tizbjz(tb)ij . From this model we can

construct an ANOVA table with expected sums of squares (Table 2),

which parameterizes the two way ANOVA model in terms of the

classic factor effects model and contains the parameters representing

the marginal effects of Loci A and B and the interaction among

these loci. The third column of Table 2 gives Expected Sums of

Squares (ESS) rather than the more common Expected Mean

Squares. Statistically they are equivalent, with the ESS typically

being a bit more transparent in calculation.

The ESS shown in Table 2 can be used to derive the power of

the F tests associated with these models. The ESS is proportional

to the noncentrality parameter of the noncentral F , and the F

statistic has a monotone likelihood ratio in this parameter (see [58]

Section 7.13). Simply put this implies that the power of the F -test

will then increase as the noncentrality parameter increases. To

compare two scenarios consider the following: for two configura-

tions of parameters, denoted by h and h
0
, if

X

i

�hhi:
02
w

X

i

�hh2
i:

then the power of the F test for the main effect A in the ‘‘’’’
configuration is greater.

This equivalent model is simpler in the sense that the

identifiability restrictions are more obvious - only the assumption

that
P

ij hij~0 is needed to be able to estimate all effects. In

particular, the main effects and interaction parameters are now

given by

Effect corresponding to ti : �hhi:~
1

b

Xb

j~1

hij

Effect corresponding to bj : �hh:j~
1

t

Xt

i~1

hij

Interaction effect : hij{�hhi:{�hh:j ,

and recall that the identifiability constraint is �hh~
1

bt

X
ij

hij~0,

and Table 2 shows that the epistasis effect contains the parameters

of the marginal effects of A and B. The question of interest is how

these effects are intertwined.

First, note that if there is no interaction then one locus cannot

influence another. To see this, recall that we have the identity

hij~tizbjz(tb)ij . If there is no interaction then (tb)ij~0 for all

i,j, and hij is of the form hij~tizbj , and the ESS are as in Table 3.

For the patterns in Figure 1:

(a) This is a no interaction pattern, which is addressed in

Figure 2. With no interaction the marginal effects are

independent, and changes in one margin have no effect on

the other margin.

Table 2. Factors and Expected Sums of Squares for the
twoway fixed effects cell means model.

Source df ESS

A t{1 br
P

i
�hh2

i
:

B b{1 tr
P

j
�hh2
:
j

Epistasis (t{1)(b{1) r
P

ij hij{�hhi
:{�hh:j

� �2

The term involving the model error s2 , is omitted as it is present in all models.
doi:10.1371/journal.pone.0012264.t002

Table 3. Factors and Expected Sums of Squares for the
twoway fixed effects cell means model when there is no
interaction.

Source df ESS

A t{1 br
P

i
�hh2

i
:~br

P
i t2

i

B b{1 tr
P

j
�hh2
:
j~tr

P
j b2

j

Epistasis (t{1)(b{1) r
P

ij hij{�hhi
:{�hh:j

� �2
~0

Note that the identifiability constraint
P

ij hij~0 implies
P

i ti~
P

j bj~0. The
term involving the model error s2 , is omitted as it is present in all models.
doi:10.1371/journal.pone.0012264.t003
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(b) This is addressed in Figure 3, and here the effect of epistasis

clearly impacts the marginal distributions as well as the

overall ESS. The overall ESS for this configuration is greater

than the ESS for configuration a indicating that the non-

centrality parameter for the F test for this scenario is

stochastically greater than for the additive model.

(c) In this pattern recessive epistasis is combined with

dominance. An increase in the column effect b can produce

an increased ESS and power in the row effect a effect

(Figure 9). It is also interesting to note that in this pattern the

interaction (epistasis)is only dependent on the b effect.

(d) In this pattern both loci exhibit recessive epistasis. The A loci

will only appear significant through an increase in the

column effect b, while the row effect a only influences the

significant of the B loci. Both row and column effects

influence epistasis (Figure 10).

(e) This is recessive epistasis of the aa and bb combinations

combined with dominance at the A locus. This is a highly

restrictive pattern as there are only two distinct parameter

values. With the constraint that the values sum to zero, there

is only one value a that is needed to specify all the means for

this mode (Figure 11). Changes in one locus affect the other

locus and the epistatic term.

(f) This case has been previously discussed in the results, the

detailed ANOVA shows that a has no effect on the columns

and, in fact, the column (B locus) has no main effect. The a

effect can increase the interaction (Figure 12). In a sense

there is really no epistasis here (as there is only one real

effect), but an analysis could find significant epistasis.

Simulated datasets
In order to mimic populations of individuals likely to be

encountered in testing for association in natural populations, the

coalescent model was used to generate random, diploid samples

drawn from a large, random mating population of constant size.

Assuming neutral evolution, the coalescent process models the

history of a population sample of sequences [59] by randomly

generating a possible genealogy for the sequences. The process

starts from the present-day sample and proceeds backward in time,

allowing a succession of coalescent and recombination events to

shape the genealogy. The waiting times between successive events

and their relative probabilities are functions of the number of

lineages present and the recombination rates between loci. A

coalescent event joins two randomly chosen lineages into one

common ancestor. A recombination event splits one randomly

chosen lineage in two, with different ancestors for the two

sequence segments on either side of the recombination position.

The process continues until all lineages have coalesced in one

individual, the most recent common ancestor of the entire sample.

Subsequently, marker mutations are superimposed on the

branches of the genealogy according to a specified mutation

model (e.g. biallelic SNPs). The genealogy with its defined mutation

positions defines the SNP haplotype sequences of the sample.

Samples were simulated based on a coalescent model with

recombination [60,61]. This process was modified to permit the

simulation of thousands of loci at fixed recombination distances by

exploiting the sparsity of the Markov Chain structure. In this way

recombination rates between each pair of adjacent loci can be

specified, and multiple recombination events are permitted at any

given position [62]. The program can be downloaded from

http://www.stat.purdue.edu/,simonsen/simcore/.

Simulated samples consisted of 100, 500 or 1000 diploid

individuals, with individual genomes consisting of 5 independent

linkage groups with 100 biallelic SNP markers per group. An equal

population recombination rate (2Nr) of 1 between adjacent

markers was specified. This can be thought of as marker distances

of 5 kb for a species with an effective population size of 10,000 and

a uniform individual recombination rate of 1% per Mb (which is

considered a simplified model for humans [63]). Mutations at the

500 specified marker positions were superimposed randomly on

branches of the generated genealogies, with a branch’s probability

of attracting mutations proportional to its length. When

appropriate (see below) the minimum allele frequency for

designated SNPs was manipulated to a desired range by allowing

the mutation to occur only on those branches that would lead to a

suitable number of descendants.

Two markers (on positions 50 and 150) unlinked to each other

were designated as loci affecting a hypothetical quantitative trait.

Figure 9. Punnett Square, Factors and Expected Sums of Squares for epistasis case c (Fig. 1c).
doi:10.1371/journal.pone.0012264.g009

Figure 10. Punnett Square, Factors and Expected Sums of Squares for epistasis case d (Fig. 1d).
doi:10.1371/journal.pone.0012264.g010
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For each individual a trait value was generated based on a

specified genetic model and the individual’s genotype, adding an

error drawn from a z distribution (SD = 1). We considered two-

locus genetic models that either showed no epistasis (Figure 1a) or

one of several forms of molecular epistasis (Figure 1b–f). Locus

effects were modeled via cell means parameterization, in which

genotypic trait means for all nine possible genotypes were

specified. The cell means parameterization is equivalent to the

more common factor effects parameterization [57] but is more

convenient for simulating specific epistatic scenarios. To compare

the different 2-locus models we maintained a fixed range of

genotypic means for all models. The difference between the

smallest and the largest of the nine trait means was fixed at 1.6 SD.

Note that in typical power analyses [64] the power is derived as a

function of the effect size (the difference between the means/

standard deviation), the type I error and the sample size. We keep

the effect size between the smallest and largest mean constant to

determine the effect of epistasis on the power for this fixed

phenotypic range. In order to compare results to some QTL type

studies, we also calculate the proportion of variance explained by

the correct model in each simulation.

For each parameter setting 50 replicated simulations were

performed. In order to avoid unwarranted stochastic genealogical

variation between simulations we held the underlying genealogies

(but not mutations) constant while varying locus frequency,

epistasis type and locus effect size.

In the simulations we manipulated allele frequencies at the two

loci, while frequencies at the 498 other marker loci were

unconstrained. Differences in allele frequency are important to

consider because (1) they affect sample sizes (and thus detection

power) for the nine possible genotypic classes in the population;

and (2) with epistasis, the translation of biological epistasis into

statistical epistasis is allele frequency dependent. That is, a given

epistatic case from Figure 1 can give rise to different partitioning of

the total genetic variance into main effects and interaction effects,

and this depends on locus allele frequencies [e.g. 39]. In our

biallelic loci, by convention we specify the smaller of the two allele

frequencies and call this the minimum allele frequency. Minimum

allele frequencies at the loci were constrained to either ‘low’

(1–10%) or ‘high’ (20–30%). In the case where the minimum allele

frequency is low, the difference between the frequencies of the two

alleles at one locus is large and disparate, while the differences are

much smaller when the minimum allele frequency is high. Note

that the effect of locus frequencies in association mapping studies

differs from typical QTL linkage mapping in experimental

populations, where marker frequencies are under experimental

control due to breeding designs and are often equal among alleles.

We evaluated how QTL detection power is affected by epistasis

by fitting the true model in each simulated dataset and tabulating

how often the full model F-test was significant. Type I error rates

were examined by fitting all 1-, 2-, and 3-marker models using

only markers that were unlinked to any causative locus. Ten

evenly spaced markers on each of the three chromosomes that did

not contain a locus with an effect on the trait were selected and all

4525 possible models using these 30 markers were fitted. Averaged

over iterations, the proportion of models with a full model F test

that had a p value below 0.05 was at or below the nominal level for

all simulations (data not shown).

Model selection procedure
To identify markers associated with the phenotype in a genome-

wide scan a 2-step model selection procedure was followed. The

first step aimed to reduce the dimensionality of the dataset by

selecting a subset of informative markers for further analysis. At

this point no block was eliminated from consideration and the

purpose of this step was purely to reduce the number of models

tested in the next step to a set that is computationally tractable,

without losing information in the model space. The approach is to

temporarily discard markers that are correlated to other markers

due to physical linkage (which, in the absence of recombination,

causes markers to be inherited together and generates population-

level associations between alleles at nearby markers [65]). The

approach is similar in spirit to Coffman et al. [46] who reduced

marker datasets in cross-based QTL analysis by pre-selecting only

one (the ‘best’) marker per linkage group. To accomplish this,

genomes are parsed into phylogenetically compatible blocks, for

which genealogies could be inferred without invoking recombina-

tion. Within each block all one- and two-marker models were

Figure 11. Punnett Square, Factors and Expected Sums of Squares for epistasis case e (Fig. 1e).
doi:10.1371/journal.pone.0012264.g011

Figure 12. Punnett Square, Factors and Expected Sums of Squares for epistasis case f (Fig. 1f).
doi:10.1371/journal.pone.0012264.g012
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evaluated for association with the phenotype; the markers from the

best model (based on the Bayesian Information Criterion (BIC)

values) were selected for further consideration.

The second step evaluated the overall F -test for all one-, two-,

and three-marker models that could be constructed with the

reduced set of quasi-independent markers. Sorting models based

on their BIC value, the markers from the best model as loci

identified by the selection procedure were identified. In summa-

rizing the results over 50 iterations, we looked at the proportion of

simulations that correctly identified zero, one, or both of the QTL

loci that were specified; the total number of loci that were selected;

the proportion of iterations that correctly identified the specified

model; and the average proportion of selected loci that were

incorrect (false discovery rate). In evaluating the model selection

results only those cases that identified the specified loci exactly

were considered correct hits. Markers that are on the same

chromosome as a causative locus can be in linkage disequilibrium

with the causative locus due to shared inheritance of physically

linked markers. Selection of linked markers by the model selection

procedure may correctly identify the presence of the genetic effect

even when the exact position is not identified. By considering only

the exact specified locus as correct hits this represents a lower

bound on the detection power. Note that many applications use a

significance test for model selection, and in that case the proper

distribution needs to be carefully considered.
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